翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Gauss-Markov process : ウィキペディア英語版
Gauss–Markov process

Gauss–Markov stochastic processes (named after Carl Friedrich Gauss and Andrey Markov) are stochastic processes that satisfy the requirements for both Gaussian processes and Markov processes. The stationary Gauss–Markov process is a very special case because it is unique, except for some trivial exceptions.
Every Gauss–Markov process ''X''(''t'') possesses the three following properties:
# If ''h''(''t'') is a non-zero scalar function of ''t'', then ''Z''(''t'') = ''h''(''t'')''X''(''t'') is also a Gauss–Markov process
# If ''f''(''t'') is a non-decreasing scalar function of ''t'', then ''Z''(''t'') = ''X''(''f''(''t'')) is also a Gauss–Markov process
# There exists a non-zero scalar function ''h''(''t'') and a non-decreasing scalar function ''f''(''t'') such that ''X''(''t'') = ''h''(''t'')''W''(''f''(''t'')), where ''W''(''t'') is the standard Wiener process.
Property (3) means that every Gauss–Markov process can be synthesized from the standard Wiener process (SWP).
==Properties of the Stationary Gauss-Markov Processes==
A stationary Gauss–Markov process with variance \textbf(X^(t)) = \sigma^ and time constant \beta^ has the following properties.
Exponential autocorrelation:
:\textbf_(\tau) = \sigma^e^.\,
A power spectral density (PSD) function that has the same shape as the Cauchy distribution:
:\textbf_(j\omega) = \frac}.\,
(Note that the Cauchy distribution and this spectrum differ by scale factors.)
The above yields the following spectral factorization:
:\textbf_(s) = \frac}
= \frac
\cdot\frac.

which is important in Wiener filtering and other areas.
There are also some trivial exceptions to all of the above.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Gauss–Markov process」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.